Applications of AI-based deep learning models for detecting dental caries on intraoral images – a systematic review

  • Inquimbert C, Talla PK, Emami E, Giraudeau N. Dialogue with key stakeholders on digital expertise for oral well being: assembly report. J Can Dent Assoc. 2023;89:n3.

    PubMed 

    Google Scholar
     

  • Umer F, Habib S. Essential evaluation of synthetic intelligence in endodontics: a scoping evaluate. J Endod. 2022;48:152–160.

    Article 
    PubMed 

    Google Scholar
     

  • Yousaf M, Aslam T, Saeed S, Sarfraz A, Sarfraz Z, Cherrez-Ojeda I. Particular person, household, and socioeconomic contributors to dental caries in kids from low- and middle-income international locations. Int J Environ Res Public Well being. 2022;19:7114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ntovas P, Loubrinis N, Maniatakos P, Rahiotis C. Analysis of dental explorer and visible inspection for the detection of residual caries amongst Greek dentists. J Conserv Dent. 2018;21:311–318.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khanagar SB, Alfouzan Ok, Awawdeh M, Alkadi L, Albalawi F, Alfadley A. Utility and efficiency of synthetic intelligence expertise in detection, prognosis and prediction of dental caries (DC)-a systematic evaluate. Diagnostics. 2022;12:1083.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng X, Yao Z, Huang Y, Yu Y, Wang Y, Liu Y, et al. Deep studying radiomics can predict axillary lymph node standing in early-stage breast most cancers. Nat Commun. 2020;11:1236.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of pores and skin most cancers with deep neural networks. Nature. 2017;542:115–118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adnan N, Khalid WB, Umer F. A man-made intelligence mannequin for example segmentation and tooth numbering on orthopantomograms. Int J Comput Dent. 2023;26:301–309.

    PubMed 

    Google Scholar
     

  • Adnan N, Umer F, Malik S, Hussain OA. Multi-model deep studying method for segmentation of enamel and periapical lesions on pantomographs. Oral Surg Oral Med Oral Pathol Oral Radio. 2024;138:196–204.

    Article 

    Google Scholar
     

  • Umer F, Adnan S, Lal A. Analysis and utility of synthetic intelligence in dentistry from lower-middle earnings international locations – a scoping evaluate. BMC Oral Well being. 2024;24:220.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umer F, Habib S, Adnan N. Utility of deep studying in enamel identification duties on panoramic radiographs. Dentomaxillofac Radio. 2022;51:20210504.

    Article 

    Google Scholar
     

  • Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Assessment of deep studying: ideas, CNN architectures, challenges, purposes, future instructions. J Large Information. 2021;8:53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon Ok, Jeong HM, Kim JW, Park JH, Choi J. AI-based dental caries and tooth quantity detection in intraoral images: Mannequin improvement and efficiency analysis. J Dent. 2024;141:104821.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alzaid N, Ghulam O, Albani M, Alharbi R, Othman M, Taher H, et al. Revolutionizing dental care: a complete evaluate of synthetic intelligence purposes amongst numerous dental specialties. Cureus. 2023;15:e47033.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lal A, Umer F. Navigating challenges and alternatives: AI’s contribution to Pakistan’s sustainable improvement targets agenda – a story evaluate. J Pak Med Assoc. 2024;74:S49–s56.

    PubMed 

    Google Scholar
     

  • Moharrami M, Farmer J, Singhal S, Watson E, Glogauer M, Johnson AEW, et al. Detecting dental caries on oral pictures utilizing synthetic intelligence: a scientific evaluate. Oral Dis. 2024;30:1765–1783.

    Article 
    PubMed 

    Google Scholar
     

  • Rani SS, Garine S, Janardhana PH, Prabhanjan Reddy LL, Kumar PJV, Dwaz CG. Deep learning-based cavity detection in various intraoral pictures: a web-based software for accessible dental care. Procedia Comput. Sci. 2024;233:882–891.

    Article 

    Google Scholar
     

  • Xiong Y, Zhang H, Zhou S, Lu M, Huang J, Huang Q, et al. Simultaneous detection of dental caries and fissure sealant in intraoral images by deep studying: a pilot examine. BMC Oral Well being. 2024;24:553.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehdizadeh M, Estai M, Vignarajan J, Patel J, Granich J, Zaniovich M, et al. A deep learning-based system for the evaluation of dental caries utilizing color dental pictures. Stud Well being Technol Inf. 2024;310:911–915.


    Google Scholar
     

  • Hunter B, Hindocha S, Lee R. The position of synthetic intelligence in early most cancers prognosis. Cancers. 2022;14:1524.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Web page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 assertion: an up to date guideline for reporting systematic critiques. BMJ. 2021;372:n71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahmood H, Shaban M, Indave BI, Santos-Silva AR, Rajpoot N, Khurram SA. Use of synthetic intelligence in prognosis of head and neck precancerous and cancerous lesions: a scientific evaluate. Oral Oncol. 2020;110:104885.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saini D, Jain R, Thakur A. Dental caries early detection utilizing convolutional neural community for tele dentistry. 2021 seventh Worldwide Convention on Superior Computing and Communication Techniques (ICACCS); 2021; 2021. p. 958–963.

  • Sonavane A, Yadav R, Khamparia A. Dental cavity classification of utilizing convolutional neural community. IOP Conf Ser Mater Sci Eng. 2021;1022:012116.

    Article 

    Google Scholar
     

  • Zhang J, Li X, Gao Z, Chen J. Picture detection of dental illnesses primarily based on deep switch studying. 2nd Worldwide Convention on Synthetic Intelligence and Laptop Engineering (ICAICE); 2021; 2021. p. 774–778.

  • Askar H, Krois J, Rohrer C, Mertens S, Elhennawy Ok, Ottolenghi L, et al. Detecting white spot lesions on dental pictures utilizing deep studying: A pilot examine. J Dent. 2021;107:103615.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding B, Zhang Z, Liang Y, Wang W, Hao S, Meng Z, et al. Detection of dental caries in oral pictures taken by cell phones primarily based on the YOLOv3 algorithm. Ann Transl Med. 2021;9:1622.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang H, Zhang P, Che C, Jin B. RDFNet: a quick caries detection methodology incorporating transformer mechanism. Comput Math Strategies Med. 2021;2021:9773917.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan MAH, Giri PS, Jothi JAA. Detection of cavities from oral pictures utilizing convolutional neural networks. 2022 Worldwide Convention on Electrical, Laptop and Power Applied sciences (ICECET); 2022; 2022. p. 1–6.

  • Kim D, Choi J, Ahn S, Park E. A wise dwelling dental care system: integration of deep studying, picture sensors, and cell controller. J Ambient Intell Humaniz Comput. 2023;14:1123–1131.

    Article 
    PubMed 

    Google Scholar
     

  • Kühnisch J, Meyer O, Hesenius M, Hickel R, Gruhn V. Caries detection on intraoral pictures utilizing synthetic intelligence. J Dent Res. 2022;101:158–165.

    Article 
    PubMed 

    Google Scholar
     

  • Liu L, Xu J, Huan Y, Zou Z, Yeh SC, Zheng LR. A wise dental health-iot platform primarily based on clever {hardware}, deep studying, and cell terminal. IEEE J Biomed Well being Inf. 2020;24:898–906.

    Article 

    Google Scholar
     

  • Park EY, Cho H, Kang S, Jeong S, Kim E-Ok. Caries detection with tooth floor segmentation on intraoral photographic pictures utilizing deep studying. BMC Oral Well being. 2022;22:573.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thanh M, Van Toan N, Vo Truong Nhu N, Nguyen T, Cu Nguyen G, Nguyen D. Deep studying utility in dental caries detection utilizing intraoral images taken by smartphones. Appl Sci. 2022;12:5504.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Qin H, Lai G, Zheng G, Xiang H, Wang J, et al. Automated classification of twin channel dental imaging of auto-fluorescence and white lightby convolutional neural networks. J Innov Optical Well being Sci. 2020;13:2050014.

    Article 

    Google Scholar
     

  • Yu H, Lin Z, Liu Y, Su J, Chen B, Lu G. A brand new approach for prognosis of dental caries on the youngsters’s first everlasting molar. IEEE Entry. 2020;8:185776–185785.

    Article 

    Google Scholar
     

  • Zhang X, Liang Y, Li W, Liu C, Gu D, Solar W, et al. Growth and analysis of deep studying for screening dental caries from oral pictures. Oral Dis. 2022;28:173–181.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Liao H, Xiao J, Jallad N, Ly-Mapes O, Luo J. A smartphone-based system for real-time early childhood caries prognosis. 2020, pp 233–242.

  • Moutselos Ok, Berdouses E, Oulis C, Maglogiannis I. Recognizing occlusal caries in dental intraoral pictures utilizing deep studying. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:1617–1620.

    CAS 
    PubMed 

    Google Scholar
     

  • Javid A, Rashid U, Khattak AS. Marking early lesions in labial coloured dental pictures utilizing a switch studying method. IEEE twenty third Worldwide Multitopic Convention (INMIC), 2020;1–5.

  • Rashid U, Javid A, Khan AR, Liu L, Ahmed A, Khalid O, et al. A hybrid masks RCNN-based software to localize dental cavities from real-time combined photographic pictures. PeerJ Comput Sci. 2022;8:e888.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talpur S, Azim F, Rashid M, Syed SA, Talpur BA, Khan SJ. Makes use of of various machine studying algorithms for prognosis of dental caries. J Well being Eng. 2022;2022:5032435.

    Article 

    Google Scholar
     

  • Jia X, Ren L, Cai J. Medical implementation of AI applied sciences would require interpretable AI fashions. Med Phys. 2020;47:1–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MoDastoni D. Exploring strategies to make AI choices extra clear and comprehensible for people. Adv Eng Innov. 2023;3:None–None.

    Article 

    Google Scholar
     

  • Navarro PK, Cadongonan JK, Reyes ME, Goma JD. Detecting clean floor dental caries in frontal enamel utilizing picture processing. Proceedings of the 2019 third Excessive Efficiency Computing and Cluster Applied sciences Convention. Guangzhou, China: Affiliation for Computing Equipment; 2019. pp. 167–171.

    Sensi Tech Hub
    Logo