Machine learning for practical quantum error mitigation

  • Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    Article 

    Google Scholar
     

  • Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

    Article 

    Google Scholar
     

  • Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).

    Article 

    Google Scholar
     

  • Bravyi, S., Dial, O., Gambetta, J. M., Gil, Darío & Nazario, Z. The future of quantum computing with superconducting qubits. J. Appl. Phys. 132, 160902 (2022).

    Article 

    Google Scholar
     

  • Cai, Z. et al. Quantum error mitigation. Rev. Mod. Phys. 95, 045005 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

    Article 

    Google Scholar
     

  • van den Berg, E., Minev, Z. K., Kandala, A. & Temme, K. Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. Nat. Phys. 19, 1116–1121 (2023).

    Article 

    Google Scholar
     

  • Kim, Y. et al. Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat. Phys. 19, 752–759 (2023).

    Article 

    Google Scholar
     

  • Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    Article 

    Google Scholar
     

  • Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).


    Google Scholar
     

  • Tsubouchi, K., Sagawa, T. & Yoshioka, N. Universal cost bound of quantum error mitigation based on quantum estimation theory. Phys. Rev. Lett. 131, 210601 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Quek, Y. et al. Exponentially tighter bounds on limitations of quantum error mitigation. Nat. Phys. 20, 1648–1658 (2024).

  • Takagi, R., Tajima, H. & Gu, M. Universal sampling lower bounds for quantum error mitigation. Phys. Rev. Lett. 131, 210602 (2023).

  • Kim, C., Park, K. D. & Rhee, J.-K. Quantum error mitigation with artificial neural network. IEEE Access 8, 188853–188860 (2020).

    Article 

    Google Scholar
     

  • Czarnik, P., Arrasmith, A., Coles, P. J. & Cincio, L. Error mitigation with Clifford quantum-circuit data. Quantum 5, 592 (2021).

    Article 

    Google Scholar
     

  • Czarnik, P., McKerns, M., Sornborger, A.T. & Cincio, L. Improving the efficiency of learning-based error mitigation. Preprint at https://arxiv.org/abs/2204.07109 (2022).

  • Bennewitz, E. R., Hopfmueller, F., Kulchytskyy, B., Carrasquilla, J. & Ronagh, P. Neural error mitigation of near-term quantum simulations. Nat. Mach. Intell. 4, 618–624 (2022).

    Article 

    Google Scholar
     

  • Patel, T. & Tiwari, D. QRAFT: reverse your quantum circuit and know the correct program output. In Proc. 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems 443–455 (2021).

  • Strikis, A., Qin, D., Chen, Y., Benjamin, S. C. & Li, Y. Learning-based quantum error mitigation. PRX Quantum 2, 040330 (2021).

    Article 

    Google Scholar
     

  • Shtanko, O. et al. Uncovering local integrability in quantum many-body dynamics. Preprint at https://arxiv.org/abs/2307.07552v1 (2023).

  • Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).

    Article 

    Google Scholar
     

  • Huang, H.-Y., Kueng, R., Torlai, G., Albert, V. V. & Preskill, J. Provably efficient machine learning for quantum many-body problems. Science 377, eabk3333 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ezzell, N., Pokharel, B., Tewala, L., Quiroz, G. & Lidar, D. A. Dynamical decoupling for superconducting qubits: a performance survey. Phys. Rev. Applied 20, 064027 (2023).

  • Pokharel, B. & Lidar, D. A. Demonstration of algorithmic quantum speedup. Phys. Rev. Lett. 130, 210602 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Seif, A. et al. Suppressing correlated noise in quantum computers via context-aware compiling. In 51st Annual International Symposium on Computer Architecture 310–324 (ISCA, 2024).

  • Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996).

    Article 

    Google Scholar
     

  • Wallman, J. J. & Emerson, J. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 94, 052325 (2016).

    Article 

    Google Scholar
     

  • Hashim, A. et al. Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor. Phys. Rev. X 11, 041039 (2021).


    Google Scholar
     

  • van den Berg, E., Minev, Z. K. & Temme, K. Model-free readout-error mitigation for quantum expectation values. Phys. Rev. A 105, 032620 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Lowe, A. et al. Unified approach to data-driven quantum error mitigation. Phys. Rev. Res. 3, 033098 (2021).

    Article 

    Google Scholar
     

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2015).

  • Ying, R. et al. Graph convolutional neural networks for web-scale recommender systems. In Proc. 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 974–983 (2018).

  • Reiser, P. et al. Graph neural networks for materials science and chemistry. Commun. Mater. 3, 93 (2022).

    Article 

    Google Scholar
     

  • Shi, Y. et al. Masked label prediction: unified message passing model for semi-supervised classification. In Proc. 13th International Joint Conference on Artificial Intelligence, IJCAI-21 1548–1554 (2021).

  • Ranjan, E., Sanyal, S. & Talukdar, P. ASAP: adaptive structure aware pooling for learning hierarchical graph representations. In AAAI Conference on Artificial Intelligence (2019).

  • Rivero, P., Metz, F., Hasan, A., Brańczyk, A. M. & Johnson, C. Zero noise extrapolation prototype. GitHub https://github.com/qiskit-community/prototype-zne (2022).

  • Sitdikov, I., Minev, Z. K. & Liao, H. Machine learning for practical quantum error mitigation. Zenodo https://doi.org/10.5281/zenodo.13769804 (2024).

  • Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article 

    Google Scholar
     

    Sensi Tech Hub
    Logo