Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python

3,350.00

Added to wishlistRemoved from wishlist 0
SKU: 44414492 Categories: , , ,

Product Description

Integrate scikit-learn with various tools such as NumPy, pandas, imbalanced-learn, and scikit-surprise and use it to solve real-world machine learning problems
Key Features

Delve into machine learning with this comprehensive guide to scikit-learn and scientific Python
Master the art of data-driven problem-solving with hands-on examples
Foster your theoretical and practical knowledge of supervised and unsupervised machine learning algorithms

Book Description
Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits.
The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms.
By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
What you will learn

Understand when to use supervised, unsupervised, or reinforcement learning algorithms
Find out how to collect and prepare your data for machine learning tasks
Tackle imbalanced data and optimize your algorithm for a bias or variance tradeoff
Apply supervised and unsupervised algorithms to overcome various machine learning challenges
Employ best practices for tuning your algorithm’s hyper parameters
Discover how to use neural networks for classification and regression
Build, evaluate, and deploy your machine learning solutions to production

Who this book is for
This book is for data scientists, machine learning practitioners, and anyone who wants to learn how machine learning algorithms work and to build different machine learning models using the Python ecosystem. The book will help you take your knowledge of machine learning to the next level by grasping its ins and outs and tailoring it to your needs. Working knowledge of Python and a basic understanding of underlying mathematical and statistical concepts is required.
Table of Contents

Introduction to Machine Learning & Scikit-Learn
Making Decisions with Trees
Making decisions with linear equations
Preparing Your Data
Image processing with nearest neighbors
Text Classification – Not all data exists in tables
Neural Networks – Here comes the Deep Learning
Ensembles – When one model is not enough
The Y is as important as the X
Imbalanced Learn – Not even 1% win the lottery
Clustering – Grouping data when no correct answers are provided
Anomaly Detection – Finding Outliers in Data
Recommender System – Learning about users’ taste from their previous interactions

About the Author

Tarek Amr has 8 years of experience in data science and machine learning. After finishing his postgraduate degree at the University of East Anglia, he worked in a number of startups and scale-up companies in Egypt and the Netherlands. This is his second data-related book. His previous book covered data visualization using D3.js. He enjoys giving talks and writing about different computer science and business concepts and explaining them to a wider audience. He can be reac

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python

3,350.00

Sensi Tech Hub
Logo
Shopping cart